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AbsImeL l l i s  paper s h m  in a simple way how non-integer exponents can arise in the 
study of the finite-N corrections to the free energy densiiy of the mean-field solution 
oi the SK modei of spin giasses. Yne weii known mean-iieid soiution obtained with 
the hierarchical ansatz is valid in the thermodpamical limit N - m. We study the 
fluctuations associated with the longitudinal eigenvalues of the free-energy Hessian in the 
neighbourhood of the 'xitical point, neglecting the interactions between different modes. 
We find that the contribution of the p i t i v e  eigenvalues is of the order of N-3/' In N; 
for the zero modes, we find that they cannot be trcated separately from the oms mming 
from the non-longitudinal fluctuations because they would give a diverent contribution. 

1. Introduction 

The study of spin glasses [I] and, in general, of frustrated systems in the last 15 years 
has developed a very strong calculation tool-the replica method-which has found 
a huge number of applications in the physics of disordered systems [2!. 

The Sherrington-Kirkpatrick (SK) model [3] is certainly the most widely studied 
model of spin glass but up to now, from the theoretical point of view, it has always 
been treated in the thermodynamical (N 4 m) limit. 

In this paper we execute the first step of the 1/N expansion around the mean- 
field solution obtained with the hierarchical ansatz; in section 2 we introduce the 
model and the mean-field solution; in section 3, we show our expansion; next, we 
define four critical exponents in t e r m  of which we can obtain the f i t  correction to 
the mean-field solution and finally, in section 5, we show the results obtained for the 
critical exponents and for the free energy density. 

O u r  calculation are based upon two approximations: the first one is to consider 
only longitudinal fluctuations of the order parameter (see section 3). This is a good 
assumption, because a complete study [4] shows that the dominant fluctuations are 
preciseiy the iongitudinai ones. The major probiem ihai we face treating oniy these 
eigenvalues is that the zero modes give a divergent contribution. The reason for this 

5 E-mail address: PARISI@ROMAZ.INFN.IT 
E-mail address: BISCARI@IPISNSVA.BITNET 

OMS.447019U184787-1150450 @ 1992 IOP Publishing Lld 4181 



4188 

divergence is that their contribution is cancelled by that of the zero modes of the 
transverse fluctuations which we do not include in this approximation. 

Next, we will neglect the interactions between the different modes-this is nothing 
but the Gaussian approximation. We will use it in (3.15). This approximation prevents 
us from finding the exact numerical values of the exponents in the finite-N correction, 
but our task is to show that non-integer power laws and logarithmic dependences arise 
from the beginning in the 1/N expansion. The values presented in the final section 
must then be regarded as a first approximation to the real numerical values. 

G Parisi qnd P Bircan 

2. The SK madel: mean-field solution 

The SK model [3] is a magnetic system composed by N Ising spins (Si = fl, i = 
h l l  -4th n U m - i l t a n i n n  I , .  . . , ' I  ,, "'U' a II(uIIII,"III(III 

where the parameters { J i j }  are chosen at random from the distribution 

The replica solution gives the free energy density of the SK model, defined as the 
average over the probability distribution of the J's of the quantity 

It can be proven [3,5] that 

is given hy 

(2.4) 

(2.5) 

with 

L[Q] = p 2 J z  QabSoSb.  (2.6) 
oCb 

Tr, denotes the sum over all the possible configurations of n Ising spins {Sa, a = 
1,. . . ,n}. 

For integer n, ( Qob) is an n x n matrix, the elements of which must minimize 
the free energy density in the n -* Ot limit. 
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The hierarchical ansatz for the replica solution [6-8] gives the parametrization 
for integer n that supplies the correct solution of the SK model. The expression of 
the replica matrix Q for integer n is obtained as the K -+ M limit of block matrices 
Q(K), defined in terms of the two families of parameters, {qi E R, i = 1 , .  . . , K} 
and { m j  EN, j = 1 ,... , K  + l), by 

In the n -* Ot limit, the two sequences of parameters { q i }  and {mj}-that 
tge &=e&efi ef L$e jth && ifi *Le r12@k $K14&y be iiii*;e(j &pk,hig a 

q(x) = pi when mi < I < mi+l (2.8) 

function 

that, in the K + 00, n + Ot limit, becomes a continuous function in the interval 

With this ansatz, the expression for the free energy density vaild near the spin 
2 E [O, l ] .  

glass transition is [8] 

(2.9) 
p z J z  1 + - In max exp ( - N+[ql)  

-Of = I n  + 7- N 191 

with 

where 2r = 1 - TZ/T,2 and T, = J .  
The order parameter function that minimizes the free energy is 

(2.11) 

with q1 = 1 + t 2  + O ( @ )  and 1 = 1 - TIT,. 

WIUUUII uue tu iIiute-vuiume eiiww. 
In the following sections we will estimate the order of the first correction to this -..... :-- A..- ._ c-: .-..- * .rr _ _ _ _  

3. Finite-N corrections 

Now that we have the right solution in the limit N -+ CO, we must face the problem 
of calculating the f i t  finite-volume corrections. The results will be particularly 
interesting for the comparison between numerical simulations (made obviously with 
a finite number of spins) and theoretical predicitons. 

As the starting point for the 1/N expansion we consider the approximate expres- 
sion (2.10) for the free energy density, valid near the critical point; to perform the 
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expansion in all the spin-glass phases we should know the eigenvalues of the complete 
Hessian of the free energy for all the values of T and h. 

At this point we will make use of the first approximation presented in the introduc- 
tion: we consider only the longitudinal fluctuations of the {Qab]  matrix around the 
mean-field solution, i.e. those which preserve the replica symmetry-breaking scheme 
introduced in the hierarchical ansatz. This approximation is equivalent to studying 
only the fluctuations of the order uarameter function d x )  around its saddle point 

G Parki and P Biscari 

Following [9], we diagonalize the quadratic part looking for normalized functions 
f x  (x )  that verify the equation 

because for these we have 
1 

6,F[fA]=X/  0 f A ( z ) ’ d x = X .  (3.7) 

The solutions of (3.6) can be separated into two families: (1) f ,(x) # 0 only if 

In the first case, taking f, (x)  = a A  cos wA x + bk sin wA x, we have 
e < 2 < ?GI,  (2) f,:.: f e oa!y if ?gl < r < I. 

w1 = g a, = 3w,b, 

(3.10) 
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The X’s that verify (3.10) are the eigenvalues of the Hessian; they come out positive 
and have an accumulation point in X = 0. 

In the second case, if X # 0, (3.6) imposes that f, is constant ( fA = l / a ) ,  
and in that case the resulting eigenvalue is X = 2ql(l  - 3q1). Otherwise, all the 
eigenfunctions have X = 0, since in this case (3.6) reduces to 

2 q 1 L q ,  f , ( Y ) d Y  = 0 .  (3.11) 

Now that we have found the solutions of (3.6). we can study the expansion of 

1 

(2.10). We begin by making the change of variable 6q(z )  -+ 6 q ( z ) / m  

where by the double integration sign we mean the functional integral over all the 
6q( z); now if we introduce a complete set of eigenfunctions fA (z) with eigenvalues 
X and expand 6q(z )  in this basis, we will have 

(3.14) 

Now we must estimate the matrices M(3) and M(4) to proceed with the 1 / N  
expansion. Here we will introduce our second approximation. Since both matrices 
have elements that tend to zero when we go far from the diagonal, we introduce the 
following hypothesis: 

(3.15) 

This simplification is nothing but the Gaussian approximation for the fluctuations of 
our system. We are supposing that the fluctuations with different A’S are independent, 
so that the matrices M(3) and M(4) are diagonal. 

If we substitute (3.15) in (3.14) we obtain 

(3.16) 
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where we have put fo I - l / O (  In 2 + p2J2/4 - Fo). 
When the number of spins is N B 1, the final sum in (3.16) is dominated by 

the small values of X because the bigger values are cut by the quadratic part of the 
exponential. On the other hand, there are many such small values because X = 0 is 
an accumulation point of the eigenvalues, so that it is convenient to substitute the 
sum over X by an integral weighted with an eigenvalue density p( A), separating the 
contribution of the zero modes from that of the non-zero ones. 

Now, for large values of A, the integral in (3.16) is dominated by the quadratic 
part of the exponential, while for small eigenvalues the important terms are the cubic 
and the quartic ones. Let A,, be the separating value of X between the two regions; 
dividing the contribution of the zero modes, the contribution of small X and that of 
the bigger eigenvalues, the expression (3.16) for the free energy density becomes 

G Parisi and P Biscan 

(3.17) 

Let us consider separately the three terms of (3.17), beginning with the thud and 

The Gaussian integral is easily computable: 
easiest one. 

dye-Ag 2 1  = ~ ~ c , d X p ( X ) I n -  A 

AN dXp(X)ln- (3.18) 

The f i t  and the second terms are more complicated. Using the notation 
M 3 -  = M(3) A and M4 I Mr) ,  and performing the change of variable y - t = 
- Y ( M ~ / ~ ” ~ ,  we will have in both 

Kate. thlt the me.ffi.cient af ?4 i!l (3,19) Elfis! he ysitive fclr fie convergence of 
the integral; in the last section, in (5.10), we will show that this condition is fulfilled. 
In practice, the effect of the quartic term is to cut the integral in d t  at the value 

(3.20) 

For smaller values of t the exponential is dominated by the t 3  term, and we have 

for t o  B 1 (3.21) t m  2 
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and a good estimate of the (3.19) is given by 

(3.22) 

Substituting (3.22) in (3.17) gives, for the free energy density, 

4. The critical exponents 

(3.23) 

Now, to proceed with our computation, we must study the behaviour of the quantities 
A,,, p, M3 and M4 introduced above. 

To do this, we will introduce and calculate four critical exponents that will describe 
their behaviour in the N + 05 limit. 

Let us suppose that, for N B 1, 

A,, - N-' (4.1) 

p ( A )  - A6 M4 - A" M3 - A B .  (4.2) 

and that consequently, for smaU A, 

Substituting these exponents in the Gaussian term (3.18), we find the contribution 
of the fluctuations with the bigger eigenvalues to the free energy density 

This result is valid if 6 # -1, but the integral (3.18) is always convergent. 
The second term, the integral over small eigenvalues in (3.17), gives 
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if 
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6 > - 1  and 4 @ - 3 a + 6 > - 1  

Otherwise, it is divergent. 
Finally, the contribution of the zero modes remains: 

(4.5) 

In the next section we will calculate these exponents, so obtaining separateiy the 
contributions of the different A regions. 

5. Results 

5.1. The erponenr @ 

Let us study the behaviour of 

for small values of A. 

0 < x < 3q1; for small eigenvalues, the (3.8), (3.9) and (3.10) become 
We begin by considing (5.1) for the eigenvectors of the family fA # 0 only if 

so that we can neglect the term bA sin w A x  in the eigenfunctions and consider 

f A c z a A c o s w , x  when A - 0 .  (5.4) 

For eigenfunctions of this type, (5.1) gives 

from which we have the first result: 

p = r  
2 '  
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For the zero modes, we have 

13 d-cos k?r 
18krr 63+[fAl = 

for the eigenfunctions of the type 

and 

16 J m ( 1  -cos k x )  
27k2nz 6,+IfA1 = 

for the eigenfunctions of the type 

where O(y) is the step function. 

5.2. The t q o n e n t  a 

Now we consider 

(5.7) 

(5.9) 

for small X values. 

ax  coswA2: as we have seen in (5.4). We have 
Again, we consider first the family f,(z) # 0 when 0 < x < 3q1, that is fk E 

9qlw, + 3cos(3qlwl) sin(3qlw,) + 2 ~ o s ( 3 q ~ w , ) ~ s i n ( 3 q ~ w , )  
144 qf w, 6,+(fi) = 

1 
-*- 

1691 
(5.10) 

from which we obtain 

a = O  (5.11) 

For the second family, f, (z) # 0 when 3ql < I < 1 (the zero modes), we have 
and M4 > 0, as was necessary for the convergence of integral (3.19). 

two identical contributions from the sines and the cosines, namely 

(5.12) 

for both. 
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5.3. The qonen t  y 

A,, is the value in which the quadratic and the cubic part of the exponential in (3.16) 
are of the same order. To find it, we consider both terms in (3.16) (to find A,, we 
can neglect the quartic term): 

G Parisi and P Biscan 

The integrand can be consider purely Gaussian when 

M3 < l  
~ 3 1 2 0  

but M, - A l l 2  for small A, so that (5.14) becomes 
X >> A,, - N - l t 2 .  

That means 

(5.13) 

(5.14) 

(5.15) 

y = -  2 '  1 (5.16) 

5.4. n i e  q o n e n t  6 
The eigenvalue equation (5.3) can be written 

which, with x = 3w, ql ,  becomes 
tan(3w,ql) = 3wxq1 - w A  

t a n  z = (1 - r)z  

(5.17) 

(5.18) 
where r = (3ql)-l. The solutions x b  of (5.18) for small X (i.e. large z) can be 
found putting xt = r / 2  + krr - ek and soh@ in et to have 

+ O(k-') 
1 

e -  ' - (1 - r)krr 

Returning to the zk and the A, = 2/(3wi), we have 

(5.19) 

(5.20) 

?b establish the behaviour of p( A), we must find the number of eigenvalues between 
X and X + 6X when X + 0. Let k and k' be two integers such that 

(5.21) 

The number of eigenvalues in the considered interval will be 

(5.22) 
so that the eigenvalue density near X = 0 is 

(5.23) 

(5.24) 
implying that 

6 = -3  
2 
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5.5. Find mdt: corectwn to the free  energy density 

Now that we have found all the critical exponents, we must verify the conditions (4.5) 
for the convergence of the small eigenvalues' contributions. 

= f in (44, we have the unique convergence condition 
-3 < 6 < -1, so that we can accept the value 6 = -$ found in (5.24) and the first 
corrections in N to the free energy density coming from positive eigenvalues are 

Substituting a = 0 and 

N-314 
- P ( f - f 0 ) = 7  ( - 631n N + 20 - 61n 1~ + 12ln3) + o ( N - ~ / ~ )  . (5.25) 

As we had anticipated, we find that the main correction is of the order 
comes from the Gaussian approximation but indicates the 

Unfortunately, we also find divergent contributes from the zero modes: they give 

N-3/41n N: the value 
presence of logarithms and non-integer exponents in the exact expansion. 

a term of the type 

c(1-3q,)5 with c =  1.834474033... (5.26) 

that is of the same order of magnitude as f,, and, worse still, another term of the 
L Y P "  
L_ - 

1 

k=2 

that is divergent. 
The reason for this divergence is the first approximation made in section 3, when 

we considered only the longitudinal eigenvalues: considering all the fluctuations [4] 
we find that zero modes also exist in the other families of eigenvalues and that their 
contributions cancel this divergence. This fact will be shown in detail in a future 
publication. 
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